US009244741B2

a2z United States Patent (10) Patent No.: US 9,244,741 B2
Peterson et al. 45) Date of Patent: Jan. 26,2016
’
(54) SYSTEM AND METHOD FOR SERVICE 6,225,995 B1* 5/2001 Jacobsetal. 715/738
MOBILITY 6,802,062 B1* 10/2004 Oyamadaetal. 718/1
6,947,965 B2* 9/2005 Glassccouc.ee.. ... 709/203
7,133,891 B1* 11/2006 Uceda-Sosa et al. ... 709/203
(75) Inventors: Robert W. Peterson, Pl?nos TX (US); 7,370,102 B1* 5/2008 Chuetal. 709/223
Thomas T. Wheeler, Frisco, TX (US) 7428723 B2* 9/2008 Greene et al. . 717/103
7,793,301 B2* 9/2010 Bhatetal. 719/313
(73) Assignee: Open Invention Network, LLC, 8,131,860 B1* 3/2012 Wongetal. 709/228
Durham, NC (US) 2002/0156943 AL* 10/2002 Ishimura etal. 710/5
’ 2004/0078420 Al* 4/2004 Marrow et al. 709/201
. 2005/0038848 Al* 2/2005 Kaluskaretal. 709/201
(*) Notice: Subject to any disclaimer, the term of this 2005/0076165 AL* 4/2005 Fujitaetal. .ccccocoooeronnn, 710/33
patent is extended or adjusted under 35 2005/0172054 Al* 8/2005 Mathrubutham et al. 710/52
U.S.C. 154(b) by 543 days. 2007/0078978 Al* 4/2007 Arnoldetal. 709/224
2007/0271385 Al* 112007 Davisetal. 709/228
. 2007/0294660 Al* 12/2007 Chongetal.c....... 717/103
(21) Appl. No.: 13/078,948
* cited by examiner
(22) Filed: Apr.2,2011 Y
. L Primary Examiner — Ario Etienne
(65) Prior Publication Data Assistant Examiner — Blake Rubin
US 2012/0254279 Al Oct. 4, 2012 (74) Attorney, Agent, or Firm — Haynes and Boone, LL.P
(51) Int.CL (57) ABSTRACT
GO6F 15/16 (2006.01)
GOG6F 9/50 (2006.01) When service requirements require moving of services reg-
HO4L 29/08 (2006.01) istered with an object request broker (ORB) at a source server,
52) US. CL continuity of service to service requests from clients may be
(52) CPC ... GOGF 9/5055 (2013.01); HO4L 67/2814 provided by queuing the service requests at the source server.
(2013.01); HO4L 67/16 (2013.01) A server context with the same GUID as a source server
i i i context may be established at a destination server. URLs for
(58) Field of Classification Search y
CPC . HO4L 41/0233; HO4L 69/40; HO4L 67/1095; the moved services may be registered with a destination ORB
HO41, 67/148: HO4L 67/2814 which may then begin receiving service requests. The source
; y 2 2 q
USPC oo 709/201 server may then respond to the queued service requests with
See application file for complete search history. respective URLs for the services registered at the destination
ORB. Endpoints at the clients may be updated with the new
(56) References Cited URLs prior to resending the service requests. The movement

U.S. PATENT DOCUMENTS

6,018,805 A *
6,026,428 A *

1/2000 Maetal.ooooeieirennnnn 714/4.3
2/2000 Hutchison et al. 718/108

of'the ORB to the destination server may thus be transparent
to the client application.

18 Claims, 6 Drawing Sheets

U.S. Patent Jan. 26, 2016 Sheet 1 of 6 US 9,244,741 B2

ey

o e,

"

=™
Pk

S—

e
FET T

3y vesnvedues

H
e 8t A 000 0 0 8 0 B0 B B8 R0 R

Barver,

U.S. Patent Jan. 26, 2016 Sheet 2 of 6 US 9,244,741 B2

E}f}t

Serenlagum. : 24
% b3
S :

Sarwess Dol

e - SELEEY -
- s

<

-,
e
et

R

:

; %
LIS 1

St
i35

U.S. Patent

Jan. 26, 2016 Sheet 3 of 6 US 9,244,741 B2

Colent

A

neilinns
Q2eps

i3]

-

oy

Clird Gorgd

- GED

-« Mgy

it

. Pl e et sy
4o g

- Bprveas Y
§

T

SRR
ok o
™ %
s :»ﬁ‘

Fiowre 3

U.S. Patent Jan. 26, 2016 Sheet 4 of 6 US 9,244,741 B2

o,

j,

b

fian B Sarver
#

¥
Tt Oomisd
- 3LEE
~ M

i
o

Lo

[
e

ol

Rk

- Lo T

LTI 4

o

.
il

e

psd
SR
4

O SRR 4

Flawre 4

U.S. Patent

Jan. 26, 2016

Sheet 5 of 6

LS ”N\“‘«..
(A%
Faa

G e

3
#

o

Suspend INrass:

' rEcpasin,

f e requests and queus

Blrvas O

ciadext on

’5»2-‘? g %"% wﬁ’ m*; I

Fiteiti:

s of aunes
wilseing

safl ranster of
naw ULy

Hespond o queusd regus

siy with notficating
£y R iM%C

peey
P
53

@
g

Lipddate URLs i olient sndpoinds

Figure §

US 9,244,741 B2

US 9,244,741 B2

Sheet 6 of 6

Jan. 26, 2016

U.S. Patent

3~ sandg

FrEO LR R R

g

Lt

PUIDWEG Y

AR

P A

PR

£

US 9,244,741 B2

1
SYSTEM AND METHOD FOR SERVICE
MOBILITY

FIELD OF THE INVENTION

This disclosure relates to distributed computing applica-
tions and in particular to systems and methods for servicing
clients during mobility and/or unavailability of a server.

BACKGROUND OF THE INVENTION

With the advent of mobile computing devices, distributed
computing applications are growing in number and complex-
ity. The present Applicants and/or Assignees have developed
a suite of innovations relating to mobile applications. These
applications operate under the name of Voyager™. The Voy-
ager suite provides mobile agent applications that can com-
municate with agents on other devices. Agents can commu-
nicate with each other using a client/server model. A server
application on one device can establish a server context that
provides server functions to client applications on other
devices. The server context operates an object request broker
(ORB), as is known. The ORB provides a brokering service to
handle client requests for a distributed object or component.
Having ORB support in a network means that a client pro-
gram can request a service without having to understand
where the server is in a distributed network or exactly how the
interface to the server program is realized. Components can
find out about each other and exchange interface information
as they are running.

In a mobile applications or distributed computing environ-
ment, it can at times be necessary or desirable to move an
Object Request Broker (ORB) and associated services from
one host location to another. Reasons for the move might
include the original computer requiring a shutdown for main-
tenance reasons, because of loss of power (and UPS deple-
tion), or for load balancing reasons. The challenging require-
ment is to execute the move with zero downtime for the
services registered in the ORB.

Existing solutions include moving an entire virtual
machine in which the ORB is running or shutting down the
application containing the ORB and restarting the application
on the destination machine. A problem with these solutions is
that they sometimes fail to satisfy the continuous operation
requirement (they shut down ORB operation for the duration
of'the move), or lack the granularity of moving a single ORB
(e.g., moving an entire virtual machine).

What is required is an improved system and method for
providing continuous service of a server application.

SUMMARY OF THE INVENTION

In one aspect of the disclosure, there is provided a method
for moving an object request broker comprising at least one
registered service from a source server to a destination server.
In the method, the source server suspends processing for new
service requests. Instead of being processed, the service
requests are queued while a destination object request broker
is established in a destination server. The source server com-
municates at least one service from the source server to the
destination object request broker that registers the service in
the destination object request broker. The source server
responds to the queued service requests from the source
server to the one or more clients with an identity of the
destination object request broker.

In one aspect of the disclosure, there is provided a method
for requesting services from a client application to a source

10

15

20

25

30

35

40

45

50

55

60

65

2

server. The method comprises sending a service request to the
source server using a URL stored in an endpoint at the client
and caching the service request in the client. A response to the
service request may include an indication of destination
server, in which case the client retrieves the cached service
request and resends the cached service request to the destina-
tion server.

In one aspect of the disclosure, there is provided a system
comprising a source server and a destination server. The
source server comprises a source server application executing
on the source server that is configured to generate a source
server context comprising a server context identity and a
source object request broker which registers one or more
services. The source server application may communicate a
move command to the destination server that indicates the
server context identity and the one or more services. The
destination server may comprise a destination server applica-
tion executing on the destination server. The destination
server application may be configured to receive the move
command from the source server application and in response,
establish a destination server context comprising the server
context identity and a destination object request broker that
registers the one or more services indicated in the move
command.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made, by way of example only, to
specific embodiments and to the accompanying drawings in
which:

FIG. 1 shows a client, server source and server destination
at an initial state;

FIG. 2 shows the client, server source and server destina-
tion at a first intermediate state;

FIG. 3 shows the client, server source and server destina-
tion at a second intermediate state;

FIG. 4 shows the client, server source and server destina-
tion at a final state;

FIG. 5 depicts a process for moving an ORB from the
server source to the server destination; and

FIG. 6 shows a distributed object computing platform with
a client instance and a server instance.

DETAILED DESCRIPTION OF THE INVENTION

The description and understanding of the present embodi-
ments will be facilitated by a brief summary of the Voyager
platform, made with reference to the system 200 shown in
FIG. 6, some aspects of which may relate to similar distrib-
uted object computing systems. Further details of the plat-
form are described in the Applicant’s co-pending patent
application Ser. No. 13/078,940, filed Apr. 2, 2011, entitled
SYSTEM AND METHOD FOR CONNECTION EFFI-
CIENCY, the entire contents of which are incorporated herein
by reference. A person skilled in the art will readily under-
stand that not all aspects of the Voyager platform are neces-
sary for performing the present embodiments.

In FIG. 6, there is shown an instance 221 of a distributed
object application operating as a service provider on a server
device. The server device may be a computing system com-
prising at least one processor and at least one operatively
associated memory. The memory may store executable
instructions for executing the server application. FIG. 6 also
shows an instance 211 of a distributed object application
operating as a service consumer or client on a client device.
The client device may be a computing system comprising at
least one processor and at least one operatively associated

US 9,244,741 B2

3

memory. The memory may store executable instructions for
executing the client application. While only a single server
instance 221 and a single client instance 211 is shown, the
network may include multiple servers and multiple clients.

A network connection may be defined as a Level 1 connec-
tion. Level 1 connections are typically created and managed
using services provided by an operating system and/or pro-
gramming language. A TCP connection over an Ethernet
LAN is an example of'a Level 1 connection.

An “Endpoint” may be defined as a Level 2 connection. An
Endpoint is one end of a Level 1 connection between two
independent copies of Voyager. An Endpoint can be created
by a server that accepts connection requests or by a client
when a connection is required. An Endpoint typically man-
ages one end of a network connection, e.g., a TCP socket. An
Endpoint’s identity is the identity of the application instance
(Voyager instance) containing it. An Endpoint also contains
zero or more network addresses, used to identify the Level 1
network connections it contains or could contain, and zero or
more Level connections, each identified by a network
address. FI1G. 6 shows a client side endpoint 215 and a server
side endpoint 243.

When two Endpoints connect using a Level 1 connection
they exchange a handshake packet that contains at least the
identity of each Endpoint.

The connection between a service consumer and a collec-
tion of services offered by a service provider may be defined
as a Level 3 connection.

A ServiceRequestHandler 223 may be defined as the End-
point container at the service provider end of a Level 3 con-
nection. A ServiceRequestHandler 223 routes a ServiceRe-
quest to a ServerContext 222.

A ClientContext 213 may be defined as the service con-
sumer at one end of a Level 3 connection. A ClientContext
213 typically references one Endpoint 215. A ClientContext’s
identity is the same as the identity of the ServerContext 222 at
the other end of the logical connection.

Establishing a Level 3 connection involves associating a
ClientContext 213 and a ServerContext 222 with a Level 2
connection. To establish the ClientContext end, an applica-
tion provides the ClientContext 213 with an appropriate End-
point 215. The ClientContext 213 then sends a request for a
Level 3 connection over the Level 1 connection managed by
the provided Endpoint 215. The request includes at least the
identity of the ServerContext whose services the ClientCon-
text requires. The Voyager that receives the request fora Level
3 connection identifies the ServerContext and asks the Serv-
erContext to establish the Level 3 connection.

The connection between a single identified service pro-
vider and a single service consumer may be defined as a Level
connection. In Voyager terms, a service provider is an
exported object, and a service consumer is the APl ofaservice
provider realized by the service provider’s proxy.

A ServerContext 222 may be defined as the service pro-
vider manager at the service end of a Level 4 connection. A
ServerContext 222 has a unique identity and is not directly
associated with an Endpoint 243.

The lifetime of a Level 1 connection, which is managed by
the containing Endpoint, may be the same as or shorter than
the lifetime of an Endpoint.

The lifetime of an Endpoint, a Level 2 connection, is man-
aged by the application.

The lifetime of a Level 3 connection, i.e., a ClientContext
or a ServerContext, is managed by the application.

A Level 1 connection may be shared by zero or more Level
2 connections.

10

15

20

25

30

35

40

45

50

55

60

65

4

A Level 2 connection may be shared by zero or more Level
3 connections.

A Level 3 connection may be shared by zero or more Level
4 connections.

A ClientContext references exactly one ServiceRequest-
Handler. A ServiceRequestHandler references all the Server-
Contexts in the containing server instance.

A ServerContext may be referenced by zero or more Ser-
viceRequestHandlers.

FIG. 6 also shows the relationships among the items. In
FIG. 6, an open diamond arrowhead, e.g. NetworkConnec-
tion 226, shows inheritance (i.e. an “is a” relationship) while
an open arrowhead, e.g. on the line between Proxy 212 and
ClientContext 213, shows a reference. A box at one end of a
reference indicates that the line represents a collection with
the item in the box as the key used to find a specific instance
within the collection.

As outlined above, services may be invoked on client appli-
cations through a proxy 212 that retrieves a service from a
service provider 221. The service may be invoked via a ser-
vice request 231 from the proxy to a ServerContext 222 that
stores the service and provides a service request response
232.

With the foregoing described as a basis of a distributed
object computing system, the present embodiments will now
be described with reference to the Figures.

In FIG. 1, there is shown a system 10 on which the methods
to be described may be embodied. In the depiction shown,
there are three copies of an application running. One of these
applications is operating as a client 12, one as a Server Source
20, and the third as a Server Destination 30. Server Source 20
contains at least one service registered with the service bro-
ker, that means any Client is able to create a reference, real-
ized as a proxy, to the service. Client 12 has a proxy 14 that
references the service found in the service broker 24 of Server
Source 20. The Client proxy 14 references the Server Source
service indirectly, as explained below.

In one embodiment, the Servers and Clients may be pro-
vided on the present Applicant’s Voyager platform. However,
this example is not intended to be limiting and a person skilled
in the art will understand that other examples are possible
without departing from the scope of what is being described
and that all such examples are intended to be encompassed
herein.

While an application typically asks Voyager to create a
Server Context when the application initializes, a Server Con-
text can be created at any time during the lifetime of Voyager.
A single instance of Voyager can contain zero or more Server
Contexts.

An application’s request to create a Server Context
includes a unique name, and zero or more Universal Resource
Locators (URLs). A Server Context 22 is shown within the
Server Source 20 in FIG. 1. At creation a ServerContext 22
creates a globally unique identifier (GUID) 23 that uniquely
identifies that ServerContext 22 throughout its lifetime, an
empty Object Request Broker (ORB) 24 that holds references
to all services 28 that can be referenced via the ServerContext,
and a RequestManager 25 that manages the zero or more
network services listening for connections. An Application
Object 294 is provided as a required parameter when creating
a Reference. A Reference and an Application Object are in a
one-to-one relationship. Once a ServerContext is created, an
application can provide the ServerContext zero or more addi-
tional URLs. When a ServerContext receives a URL it imme-
diately creates the underlying network structures, adds the
connection 27 to the RequestManager 25, and begins process-
ing connection requests.

US 9,244,741 B2

5

The Client proxy 14 points to a local ClientContext that
represents Server Source 20 on Client 12. A ClientContext 15
holds the ClientContext’s unique name, being the same name
as the ServerContext, the globally unique id (GUID) 16 of the
ServerContext 22 (i.e. GUID 23) that the ClientContext ref-
erences, a collection of zero or more Universal Resource
Locators (URLs) that reference a Server belonging to Serv-
erSource 20, and a collection of zero or more endpoints. A
ClientContext 15 is typically created with only the Server-
Context’s unique name 21. A ClientContext typically discov-
ers the ServerContext’s GUID 23 during the handshake that
happens when the ClientContext 15 establishes the initial
communication channel to a ServerContext 22. A Client con-
nection 295 to a ServerContext 22 is created on demand, and
can be disconnected at any time. The connection between
Client 12 and ServerSource 20 could use a TCP socket, an
encrypted TCP socket, a connection over Bluetooth, a con-
nection between two RS-232 serial ports, or any other com-
munication mechanism able to move data between two end-
points.

In the context of the Voyager platform, the Client (i.e.
Voyager Client) depicted in FIG. 1 is running applications
that created and currently use proxies to services made avail-
able, “exported” by ServerSource 20 (i.e. Voyager Server
Source). This means the following sequence happened in
order to establish a connection over which to transfer requests
and responses.

1. The server application created a ServerContext, passing
in the name and a URL.

a. The new ServerContext 22 created and saved a new

GUID 23.

b. The new ServerContext 22 created a new request broker
(ORB) 24.

c. The new ServerContext 22 created a new Request-
Handler 26.

d. The new ServerContext 22 asked the new Request-
Handler to create a server connection 27 for the URL the
application provided.

e. The RequestHandler established the server connection
27.

f. The application created a service and asked the Server-
Context 22 to export it, thus making the service available
to applications on client devices.

g. The ServerContext associated a reference number 28
with the service, and saved the service in the ORB 24.

2. The application 11 created a ClientContext 15 in a client
device, passing in the context name. The ClientContext 15
saved the name.

3. The application Client 12 asked the ClientContext 15 to
create a connection and provided the URL.

4. On demand, e.g., when the Application Object 11 used
the proxy 14, the ClientContext 15 used the URL to create an
Endpoint 17.

5. The Endpoint 17 used the URL 18 to create a connection
to ServerSource 20.

6. To establish a connection:

a. ServerSource 20 detected the connection request in a
Server 27, e.g., accepted the connection on a TCP server
socket.

b. The ServerSource 20 created a connection 295, provid-
ing the new Connection 19 a reference to the Request-
Handler 26.

c. Client 12 sends the client handshake over the connection
29b.

d. ServerSource 20 replies with the server handshake,
which includes the ServerContext’s GUID 23.

10

15

20

25

30

35

40

45

50

55

60

65

6

e. During processing of the server handshake, Client 12
stores the ServerContext’s GUID 23 in the ClientCon-
text 15 (GUID indicated as reference numeral 16 in
ClientContext 15).

7. The request from the Client Application Object 11
through the proxy 14 is passed over the connection 295 to the
RequestHandler 26, which uses the ServerContext’s ORB 24
to resolve the addressed service, at which point the Request-
Handler executes the Client application’s request and returns
the result.

As stated above, there can be times when it is necessary or
desirable to move an ORB and associated services from one
server to another. In an embodiment to be described, the
Server Source 20 is able to temporarily suspend processing of
requests, and then when the new location becomes available,
notify the originator of the request of the new location. The
request originator is then able to resubmit the request to the
new location without intervention by the client application,
i.e., the resubmission happens entirely within the request
processing system.

An embodiment of the moving process for moving the
ServerContext from ServerSource 20 to ServerDestination 30
will now be described with reference to FIGS. 1 to 4 and to the
flowchart 100 of FIG. 5.

Initially Client 12 is connected to the ORB 24 hosted by
ServerSource 20 by connection 295, as depicted in FIG. 1.
The ClientContext 15 and ServerContext 22 contain GUID
and Name with identical values. The Endpoint 17 and Server
27 contain the same URL, i.e. URL,_,,.... The application
version running on the destination device, e.g. ServerDesti-
nation 30, has no ClientContexts or ServerContexts.

At step 101, the ServerSource 20 is asked (e.g. by an
administrator who uses an admin API, not shown) to move
ServerContext 22 from ServerSource 20 to ServerDestination
30. The move request includes the URLs that ServerDestina-
tion 30 will use to create Connections and RequestHandlers
36 on ServerDestination 30 that match those in ServerSource
20.

At step 102, ServerSource 20 asks ServerDestination to
create a new ServerContext on ServerDestination 30 with the
same name and GUID as the ServerSource ServerContext
that is moving. While this means that temporarily, the GUID
is not actually globally unique, at this stage in the process, the
process requests are still being handled by ServerSource 20 so
no conflict exists. ServerSource 20 includes in the request the
server URLs 27.

ServerDestination 30, as part of starting up, creates a Serv-
erContext and the rest of the related objects. A single collec-
tion of distinguished objects with special index numbers
exists in all ORBs, e.g., Namespace, Factory, and other
objects providing Voyager services as distinguished from
application services. The lifetime of these distinguished ser-
vices is the same as the lifetime of a Voyager instance. The
ORB move service may be provided as one of these distin-
guished services and used by the ServerSource and Server-
Destination to communicate the ORB move request.

At step 103, ServerDestination 30 creates the ServerCon-
text 32 and, for each URL provided by ServerSource 20,
creates a server connection 37 with a new URL. This results
in the state depicted in FIG. 2 in which ServerDestination 30
now has the structure into which the ORB 34 and Application
objects can be moved and in which ServerSource 20 is ready
to suspend request processing and move the ORB.

At step 104, ServerSource 20 tells the RequestHandlers 26
to suspend processing of new requests. In suspending request

US 9,244,741 B2

7

processing, the ServerSource RequestHandlers allow new
connections to be created, but add new client requests to a
hold queue.

At step 105, when all currently executing requests are
completed, the ServerContext 22 moves the ORB 24 and all
the services, for example those provided by Application
Object 29a, exported by the ORB to the new ServerContext
32 in the ServerDestination 30. Thus the ORB 34 of Server-
Destination 30 includes Reference 38 and Application Object
39 that correspond to the references and application objects of
the ServerSource 20.

At step 106, after successfully receiving the ORB 34 and
referenced services 39, the ServerContext 32 of ServerDes-
tination 30 begins processing requests.

Atstep 107, ServerDestination 30 tells ServerSource of the
successful transfer of the ServerContext’s ORB and refer-
enced services and provides the new URLs, in response to
which the ServerContext 22 of ServerSource 20 tells the
Request Handler 26 to respond to each sender of a held or
queued request with a notification of the new URL(s) on
ServerDestination 30 (step 108).

At step 109, when the Endpoints 17 of ClientContext 15
receive the notification with the new URL, the old connection
is discarded, resulting in the state shown in FIG. 3 in which
the connection 295 has been closed and discarded, but no new
connection to ServerDestination 30 has yet been created.
Now in Client 12, the new URL 18a replaces the old one, and
a new connection is created using the new URL. The new
URL references ServerDestination 30. The original, unmodi-
fied request is then resent over the new connection 2954. Send-
ing an “unmodified” request means the client needs to cache
requests until receiving a response to prevent changes in the
client state from resulting in different values being marshaled
and sent as part of the new request.

After the RequestHandlers 26 of the ServerContext 22 of
ServerSource 20 finish sending the change notifications,
ServerSource 20 destroys the ServerContext 22 and all the
services it owns, thus resulting in the state shown in FI1G. 4, at
which time, the move is complete.

An advantage of the above described systems and methods
is the use of the ServerContext identity (name and GUID) to
maintain the logical relationship between the Proxy/Client-
Context and the ServerContext/ORB while changing the
identity of the Voyager instance containing the ServerCon-
text/ORB. This contrasts with other known Java RPC imple-
mentations provided by Java which lack an identity of the
service that is independent of the service’s network address,
i.e., the logical and physical addresses are bundled into a
single identity implemented as a network address (IP
address+port number+service index). In the present case, a
service’s address is ServerContext GUID+service index,
which omits the network address, and the ClientContext is
responsible for routing a service invocation over a network
connection that ends up at the correct ServerContext in the
correct Voyager instance.

The above described systems and methods thus provide a
mechanism for allowing services to transparently (from the
perspective of the client) be moved from one location (net-
work endpoint) to another. This gives distributed applications
high reliability and availability through a mechanism to pro-
vide failover and load balancing; and provides for easier
server maintenance activities.

Continuous operation of critical services is provided by
enabling 100% service uptime through transparent service
mobility and prevention of loss of requests, which results in
improved opportunities for load balancing through transpar-

10

15

20

25

30

35

40

45

50

55

60

65

8

ent service mobility. Application development can also be
simplified by supporting ORB and service mobility without
coding in the application.

In the above described methods, the identity of the ORB,
expressed as a globally unique id (GUID) of the server con-
text, is independent of the ORB’s network address, and host
operating system identity. This enables the lifetime of a
physical connection, e.g., a network socket connection, to be
independent of the lifetime of the logical connection.

Instead of shutting down an entire machine or application,
individual services are suspended and restarted on the new
location after any currently executing requests have been
completed. This helps ensure continuity and availability of
services, by (1) allowing service state to be persisted, and (2)
ensuring that no requests are abnormally terminated.

The components of the system 10 may be embodied in
hardware, software, firmware or a combination of hardware,
software and/or firmware. In a hardware embodiment, the
client, the source server and the destination server may each
comprise a processor. The respective client and server appli-
cations may be stored as a set of executable instructions in a
memory that is operatively associated with the respective
processor.

Although embodiments of the present invention have been
illustrated in the accompanied drawings and described in the
foregoing description, it will be understood that the invention
is not limited to the embodiments disclosed, but is capable of
numerous rearrangements, modifications, and substitutions
without departing from the spirit of the invention as set forth
and defined by the following claims. For example, the capa-
bilities of the invention can be performed fully and/or par-
tially by one or more of the blocks, modules, processors or
memories. Also, these capabilities may be performed in the
current manner or in a distributed manner and on, or via, any
device able to provide and/or receive information. Further,
although depicted in a particular manner, various modules or
blocks may be repositioned without departing from the scope
of the current invention. Still further, although depicted in a
particular manner, a greater or lesser number of modules and
connections can be utilized with the present invention in order
to accomplish the present invention, to provide additional
known features to the present invention, and/or to make the
present invention more efficient. Also, the information sent
between various modules can be sent between the modules
via at least one of a data network, the Internet, an Internet
Protocol network, a wireless source, and a wired source and
via plurality of protocols.

What is claimed is:

1. A method for moving an object request broker compris-
ing at least one registered service from a source server to a
destination server, the method comprising:

communicating a URL of each service registered with the

source server to the destination server;

creating a server connection in the destination server for

the URL of each service from the source server;
suspending processing of new service requests for the at
least one registered service in the source server;
queuing service requests received by the source server
from one or more clients after the suspension of service
request processing;

establishing a destination object request broker in a desti-

nation server;

while processing of new service requests to the source

server are suspended, communicating the at least one
service from the source server to the destination object
request broker;

US 9,244,741 B2

9

while processing of new service requests to the source
server are suspended, registering the at least one service
in the destination object request broker; and

responding to the queued service requests from the source
server to the one or more clients with an identity of the
destination object request broker.

2. The method of claim 1 wherein establishing a destina-
tion object request broker comprises establishing a destina-
tion server context at the destination server, the destination
server context comprising the destination object request bro-
ker and a server context identity that is the same as a server
context identity of a source server context.

3. The method of claim 2 wherein the server context iden-
tity is independent of a network address of the source server.

4. The method of claim 1 comprising communicating a
URL of the at least one service registered with the destination
object request broker to the source server.

5. The method of claim 4 wherein responding to the queued
service requests comprises communicating a URL for a
requested service received from the destination server context
by the source server to the client.

6. The method of claim 5 comprising:

receiving a response to a queued request in a client; and

updating an endpoint in the client with a URL indicated in

the response.

7. The method of claim 6 comprising:

creating a new connection at the client to the destination

server using the URL indicated in the response;
retrieving a cached service request in the client;
resending the cached service request using the new con-
nection.

8. The method of claim 1 comprising deconstructing a
source server context after responding to the plurality of
queued service requests.

9. A non-transitory computer readable medium comprising
instructions that when read by a processor, cause the proces-
sor to perform:

communicating a URL of each service registered with the

source server to the destination server;

creating a server connection in the destination server for

the URL of each service from the source server;
suspending processing of new service requests for the at
least one registered service in the source server;
queuing service requests received by the source server
from one or more clients after the suspension of service
request processing;

establishing a destination object request broker in a desti-

nation server;

while processing of new service requests to the source

server are suspended, communicating the at least one
service from the source server to the destination object
request broker;
while processing of new service requests to the source
server are suspended, registering the at least one service
in the destination object request broker; and

responding to the queued service requests from the source
server to the one or more clients with an identity of the
destination object request broker.

10. The non-transitory computer readable medium of claim
9, wherein establishing a destination object request broker
comprises establishing a destination server context at the
destination server, the destination server context comprising

10

15

20

25

30

35

40

45

50

55

60

10

the destination object request broker and a server context
identity that is the same as a server context identity of a source
server context.

11. A system comprising:

at least one processor; and

at least one memory;

wherein the at least one processor and the at least one

memory are communicably coupled to one another;
wherein the at least one processor is configured to:

communicate a URL of each service registered with a

source server to a destination server;

create a server connection in the destination server for the

URL of each service from the source server;

suspend new service requests for the at least one registered

service in the source server;

queue service requests received by the source server from

one or more clients after the suspension of service
requests;

establish a destination object request broker in a destina-

tion server;
while new service requests to the source server are sus-
pended, communicate the at least one service from the
source server to the destination object request broker;

while new service requests to the source server are sus-
pended, register the at least one service in the destination
object request broker; and

respond to the queued service requests from the source

server to the one or more clients with an identity of the
destination object request broker.

12. The system of claim 11, wherein an establishment of
the destination object request broker comprises an establish-
ment of a destination server context at the destination server,
the destination server context comprising the destination
object request broker and a server context identity that is the
same as a server context identity of a source server context.

13. The system of claim 12 wherein the server context
identity is independent of a network address of the source
server.

14. The system of claim 11 wherein the at least one pro-
cessor is configured to communicate a URL ofthe at least one
service registered with the destination object request broker
to the source server.

15. The system of claim 14 wherein the response to the
queued service requests comprises a communication of a
URL for a requested service received from the destination
server context by the source server to the one or more clients.

16. The system of claim 15 wherein the at least one pro-
cessor is configured to receive a response to a queued request
in the one or more clients; and

update an endpoint in the one or more clients with a URL

indicated in the response.

17. The system of claim 16 wherein the one or more pro-
cessors are configured to:

create a new connection at the client to the destination

server using the URL indicated in the response;
retrieve a cached service request in the client; and

resend the cached service request using the new connec-

tion.

18. The system of claim 11 wherein the one or more pro-
cessors are configured to deconstruct a source server context
after the response to the plurality of queued service requests.

#* #* #* #* #*

